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ABSTRACT While control barrier functions provide a powerful tool to endow controllers with formal
safety guarantees, robust control barrier functions (RCBF) can be used to extend these guarantees for
systems with model inaccuracies. This paper presents a generalized RCBF framework that unifies and
extends existing notions of RCBFs for a broad class of model uncertainties. Main results are conditions for
robust safety through generalized RCBFs. We apply these generalized principles for more specific design
examples: a worst-case type design, an estimation-based design, and a tunable version of the latter. These
examples are demonstrated to perform increasingly closer to an oracle design with ideal model information.
Theoretical contributions are demonstrated on a practical example of a pendulum with unknown periodic
excitation. Using numerical simulations, a comparison among design examples are carried out based on a
performance metric depicting the increased likeness to the oracle design.

INDEX TERMS Safe control, safety filter, robust safety, model uncertainty, control barrier function

I. INTRODUCTION

Safety is one of the most important requirements when
designing an autonomous system. Motivated to find con-
trol inputs with formal safety certification, safety-critical
controllers can be designed using methods such as model
predictive control [1], reference governor [2], or Hamilton-
Jacobi-based reachability [3]. Relying on a safety verification
tool called barrier certificates [4], control barrier functions
(CBFs) provide one such framework, and this has been
widely adopted in the recent literature [5], [6]. In simple
terms, safety (or set invariance) is defined by staying in
safe states corresponding to the positive values of a scalar-
valued function h. The CBF framework provides a sufficient
condition for safe control in the form of a lower bound on
the time derivative h. One of the widely utilized applications
of CBFs has been a control design paradigm called safety
filters [6], [7], where the deviation from a given controller
is penalized in a quadratic program (QP) while subject to a
CBF-based safety constraint.

Proven to be a powerful tool in synthesizing safe con-
trollers, the CBF literature has expanded towards various
directions, including higher order derivatives to increase
feasibility [8], [9], sampled-time systems [10]-[12], different
time-explicit safety definitions [13], [14], and more general
temporal logic specifications [15]. One particular research
direction that has gathered much interest is robustness
against unmodeled dynamics. CBF-based safety guarantees
may degrade if there is a mismatch between the real system
and the model used to represent it. This mismatch may
emerge from unknown external disturbances [16] or complex
internal dynamics omitted to facilitate the implementation.

Two main approaches have arisen for robustness against
deterministic uncertainties: input-to-state safety (ISSf) and
robust control barrier functions (RCBFs). On one hand,
the ISSf framework (which is inspired from input-to-state
stability for control Lyapunov functions [17]) can be used to
obtain an arbitrarily small (graceful) degradation of safety
guarantees in the presence of uncertainty [16], [18]-[20]. On
the other hand, motivated to obtain zero safety degradation,
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the RCBF framework investigates conditions to sufficiently
ensure the CBF-based safety condition for systems with
uncertainty under the worst possible case [21].

This paper advances the theoretical and practical un-
derstanding of RCBFs by generalizing their framework to
accommodate a wide spectrum of uncertainties. In particular,
we present an overview of the sufficient conditions for
feasible robust safety-critical control against different forms
of uncertainties. Then, we study solutions for specific prob-
lem setups with increasing likeness to an oracle controller.
Robust safety filters designed based on these principles are
implemented on a practical example, and we illustrate the
theoretical findings using simulations.

A. Literature on RCBF

The study of robust optimization in the presence of un-
certainty spans back to earlier studies [22], [23], even in
the context of barrier-Lyapunov functions [24]. One of
the key contributions for the CBF-based controllers was
given in [21], where the CBF-based safety constraint was
modified, hence the name robust CBF (RCBF). Providing
conditions for sufficiently compensating the uncertainty un-
der the worst-case scenario, the RCBF framework proves to
be an effective method to guarantee robust safety. The RCBF
framework received attention so much so the definition has
expanded rapidly to other types of uncertainties ever since.
For example, uncertainties with state dependence were ad-
dressed in the form of parametric uncertainties [25]-[27], or
in a more general form [13], [28], [29]. The more challenging
case of uncertainties in how control inputs are related to the
state dynamics were considered in works [30]-[33].

The framework was also adopted by less conservative
methods relying on estimators with deterministic or proba-
bilistic residual estimation errors. RCBF definitions in these
works took different forms to incorporate the estimator and
the error compensation. For example, adaptive control tech-
niques were adopted for parametric uncertainties [25]-[27],
[34], where limitations in the parameter space were used in
the RCBF definition. Various disturbance and state observer
approaches were implemented for online uncertainty estima-
tion [29], [35]-[41], where bounds on the Euclidean norm
of the uncertainty, its derivative or its underlying dynamics
were incorporated into the RCBF definition, and various
forms of Lipschitz constants were utilized. Learning-based
and data-driven extensions of the RCBF framework typically
utilize Lipschitz constants or bounded Jacobians regarding
the uncertainty [42]-[44]. When unknown dynamics are
estimated with probabilistic confidence bounds, adding these
terms in the RCBF definition provides safety guarantees with
high probability [45]-[50].

Robustness requirements for deploying safety-critical con-
trollers with specified sampling interval were also addressed
within the RCBF framework. In this context, the definition
of the RCBF incorporates the Lipschitz constants of the
system and constraint functions, along with the bounds of the
control space [10], [11], [S1]. Other types of imperfections

addressed using the RCBF framework are robustness against
measurement errors [52] and unmodeled input dynamics
[53], which utilize Lipschitz constant and integral quadratic
constraints, respectively. The RCBF framework was also
extended to higher order CBF formulations [54], [55].

B. Contributions

The aforementioned boom in the robust safety-critical con-
trol literature inevitably led to a fractured landscape of
different RCBF definitions that rely on various assumptions
on the system, safe set and uncertainty. Motivated by the lack
of such a study, we present an overview of the general robust
safety-critical control design principles within the scope of
the CBF framework as the first contribution of the paper. In
particular, we elevate the RCBF formulation by considering
a general form of uncertainty. This generalization not only
unifies existing approaches but also establishes a foundation
for deriving simplified verification conditions and imple-
mentable solutions for robust safety-critical controllers.

The second contribution of the paper demonstrates the
utility of the general framework by developing a robust
safety filter for a previously unaddressed type of uncer-
tainty. Specifically, we propose a novel sufficient condition
to guarantee feasibility and robust safety and to enable
the derivation of closed-form controllers in certain sce-
narios. Additionally, leveraging the generalized framework,
we introduce a tunable controller design that incorporates
disturbance observers, extending the state of the art by
reducing conservativeness. The tunability concept, originally
conceived for the ISSf framework, is adapted here to im-
prove flexibility and performance, demonstrating its broad
applicability across different RCBF methods.

Finally, the theoretical advancements are validated through
application to a physics-based example involving a pendulum
with unknown periodic excitation. Numerical simulations
showcase the efficacy of the proposed methods, compare
their performance metrics to an idealized oracle design
and highlight the significant reduction in conservativeness
achieved by the proposed controllers. These results under-
score the potential of the generalized RCBF framework to
unify, extend, and enhance existing approaches of robust
safety-critical control.

C. Organization

The paper is organized as follows. Section II provides the
theoretical foundation, introducing the general principles of
CBFs and extending these concepts to RCBFs to address
system uncertainties. Section III presents the detailed design
steps of a robust safety filter for a specific set of uncertainty
assumptions. In Section IV we extend these principles for a
less conservative problem setup with a disturbance observer.
Section V introduces a detailed discussion on the perfor-
mance of previously proposed controllers on a practical
application platform. Section VI concludes the paper with
a summary and future work.
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Il. GENERALIZED RCBF FRAMEWORK

A continuous function a:R — R is called extended
class Ko function (denoted as a € K2) if «(0) =0, it
is strictly increasing, and Tgrinooa(r) = Fo0. The term

Vh :R™ — R" denotes the gradient vector of a function
h:R™ — R. Also, || - || denotes the 2-norm.

A. Safety and Control Barrier Functions
Consider a nonlinear system affine in control:

= f(z,t) + g(z,t)u, x(ty) =xz9 € R, (1

where terms z € R”, uc UCR™ and te T2 [to, 00)
denote the state, input and time from a given initial
time ¢y € R, respectively, while functions f : R™” x T — R"™
and ¢g:R"™ x T — R™*™ describe dynamics. Substituting
a feedback controller k:R™ x T — R™ into the input
u = k(x,t) leads to the closed loop system:

&= f(x,t) + g(x,t) k(z,t). 2)

If we can find an open set X C R™ on which functions f,
g and k are locally Lipschitz continuous in x and piece-
wise continuous in ¢ for all ¢ € T, then there exists a time
interval I(xg,t9) C T for each initial condition ¢ € X such
that (2) has a unique solution z(¢) for all ¢ € I(zo,to) [56].
Throughout the paper we assume that the solution is forward
complete, that is, I(zg, o) = T.

Our goal is to obtain a formal guarantee that, initiated
from a set, the solution never leaves the set.

Definition 1 (Safety, [6]). The closed loop system (2) is
safe w.r.t. a set S C X C R™ if for all o € S we have that
x(t) € S for all t > .

In particular, we consider set S defined as the 0-superlevel
set of a continuously differentiable function i : X — R:

S={reXCR" | h(x) >0}, 3)
O0S={reXCR" | h(z)=0}, 4)
Int(S) ={r e XCR" | h(z) >0}. )

Here, S and Int(S) denote the boundary and the interior
of S, respectively.

Definition 2 (Regular value). A number p € R is called a
regular value of the function h : X — R if for each z, € X
satisfying h(z,) = p we have Vh(zx,) # 0.

If 0 is a regular value of h, then a non-zero gradient
exists for h everywhere on OS. Then a vector y € R" is
an element of the tangent cone of S at a point x € 9§ if
we have Vh(z)Ty > 0 [57]. Nagumo’s theorem provide a
condition for safety by utilizing tangent cones [58], [59]:

Theorem 1 (Nagumo’s theorem, [58]). Let S be the 0-
superlevel set defined as in (3) with a continuously differen-
tiable function h : X — R, and let 0 be a regular value of
h. The closed loop system (2) is safe w.rt. S if and only if:

Vh(z)" (f(z,t) +g(z,t)k(z,t)) >0, V(z,t) € (dSxT).
(6)
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Remark 1. A proof of Nagumo’s theorem is in [57, §4.2].
While this proof is constructed for autonomous systems, it
can be extended to nonautonomous ones by introducing the
time variable as a fictitious state; see [57, §4.2.2] for details.

Our overarching goal is to design safety-critical controllers
k(x,t) such that the corresponding closed loop system (2) is
safe. Control barrier functions provide a sufficient condition
for the existence of a safe controller. Note that, hereafter we
will utilize the Lie derivative notation L¢h and Lyh for the
time derivative of h along the system:

Wz, u,t) = Vh(z)" f(x,t) 4+ Vh(z) g(z,t) u.
Lyh(x,t)
Definition 3 (Control barrier function [60]). Let S be
the O-superlevel set defined as in (3) with a continuously
differentiable function h: X — R, and let 0 be a regular
value of h. Then, the function h is called a control barrier
Sunction (CBF) for (1) on (X x T) if there exists a o € K¢
such that V(z,t) € (X x T):

itelg [th(ac7 t) + Lyh(z, t)u| > —a(h(x)).

(N

Lyh(z,t)

®)

Defining the point-wise set of controllers:

Kcepr(z,t)2{ucU | Lyh(z,t)+Loh(z, t)u>—a(h(x))},
)
the existence of h implies that Kcpp(z,t) is not empty

V(z,t) € (X x T). Safety is ensured for controllers taking
values in Kcpp.

Lemma 1 ([60]). Let h be a CBF for (1) on (X x T).
A controller k(x,t), that is Lipschitz continuous in x and
piecewise continuous in t, ensures that the system (2) is safe

wrt. 8§ C X ifk(z,t) € Kopr(z,t) holds ¥(z,t) € (X x T).

Proof. The K¢, definition implies a(h(x)) =0, VY € 0S.
Thus, (9) implies that any controller k(z,t)€ Kcpr(z,t)
satisfies (6). The regularity conditions on the controller %
ensure the existence of a unique solution z(t), and Theo-
rem 1 completes the proof. O

Remark 2. In Definition 3 we look for a strict inequality in
the condition (8), whereas the inequality is non-strict in the
definition of Kcpp in (9). As elaborated in the works [5],
[21], [59], [61], the strict inequality in the CBF definition
allows us to endow the CBF-based controllers with useful
properties such as continuity and Lipschitz continuity.

The following set definition will keep the notation com-
pact throughout the paper:
G={(z,t) € XxT) | Lgh(z,t) =0} (10)

The set G contains x and ¢ values that the vector valued func-
tion Lyh(x,t)" € R™ vanishes. That is, the input relative
degree of h becomes more than one for any (z,t) € G.

Remark 3 ([59]). The condition

Lih(z,t) > —a(h(z)), Y(z,t)€q, (11)
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is a necessary condition for the inequality (8). This implies
that, should (8) hold, then safety can be shown with L¢h
when the input relative degree of h is more than one.
Furthermore, if U = R"™, then (11) amounts to a necessary
and sufficient condition to verify whether a function h is
CBF [59]. This is an easier condition to check whether a
given h is a CBF for a system. We will utilize this property to
obtain simpler sufficient conditions that ensure the feasibility
of the robust safety-critical control problem.

B. Safety Filters

We can utilize CBFs in a pointwise optimization problem
under the context of correcting a given—possibly unsafe—
nominal controller. In particular, the goal is to ensure safety
in a minimally invasive fashion. Consider the controller

kqp(z,t) = argmin  [lu — ka(z,)|” (12)
uelU
s.t. Lih(z,t) + Lyh(z, t)u > —a(h(z)).

Here kg : X x T — U is an existing controller, Lipschitz
continuous in x and piecewise continuous in ¢, with desired
guarantees like optimality and stability. The constraint en-
sures safety, while the cost function penalizes the deviation
from k4. As a result, a minimum intervention occurs only
when necessary (i.e., when kq(x,t) ¢ Kcpr(z,t)). If U can
be represented with affine constraints, this problem becomes
quadratic programming (QP). The following theorem sum-
marizes key points about this CBF-based controller scheme
(often referred to as safety filter).

Theorem 2 ([59], [62]). Let S be the 0-superlevel set
defined as in (3) with a continuously differentiable function
h: X — R, and let 0 be a regular value of h.

o I[fU=R"™, then h is a CBF for (1) on (X x T) if and
only if (11) holds.

e Let h be a CBF for (1) on (XxT), then the QP
(12) is feasible, and kqp(z,t) € Kcpr(z,t) for all
(z,t) € (X x T). This implies that the system (2) is safe
w.rt. S when u = kqp(z, t).

o [fU =R"™, then the QP has a closed-form solution:

kqp(z,t) = ka(z,t) + max {0, ®(z,t)} Lyh(z, 0T,
(13)
where the function ® : X x T — R is defined as:
B t) 2 b(x,t) ?f Lyh(z,t) #0,

0 if Lyh(z,t) =0,
with the function ® : X x T — R given as:
Lih(z,t) + Lgh(z,t)ka(z,t) + a(h(z))

[ Lgh(z, t)]?

(14)

®(z,t) & —

5)

Interested reader is referred to works for details [62], [63].

Remark 4. ([62], [63]) For a scalar input system, i.e., m = 1,
the safety filter (13) simplifies to:

min{kq(z,t), Pqp(x,t)} if Lyh(x,t)<O0,

kqp(z,t) = max{kq(z,t), Pqp(z,t)} if Lyh(z,t)>0,
ka(x,t) if Lyh(z,t)=0,
(16)
where @qp : X x T — R is given as:
L
Dqp(z,1) L fh(x’t) + Oé(h(.%')) (17)

Lgh(xv t)
Remark 5. Since the Lipschitz properties are preserved
through a max/min operation [64], the safety filter in (13)
(and (16)) can be shown to be Lipschitz continuous in x if
all functions have the same property [21], [65].

Safety guarantees may degrade when the CBF-based con-
trol design relies on a partially known system model. Thus,
successful implementation of a CBF-based safety-critical
controller depends on the resilience of the design against
uncertainties emerging from unmodeled dynamics. Next, we
investigate conditions to obtain robust safety for the CBF-
based safety condition (8) for a general type of uncertainty.

C. Generalized Robust CBFs
Consider the system
&= f(z,t) + g(z,t) u+ pz, u, t). (18)

where f and ¢ are the nominal (known) system functions,
and p: X x U x T — R™ represents the uncertainty in the
model. A controller k yields the closed loop system

&= f(x,t) + g(x, 1) k(z,t) + p(z, k(z, 1), 1).
Evaluating h along the open loop system (18) yields:

h(z,u,t) = Lyh(z,t) + Lgh(z,t)u + L, h(z,u,t). (20)

19)

The uncertainty prevents us from looking for the condition
h > —a(h), cf. (7). This motivates the introduction of robust
control barrier functions (RCBFs) as follows. The main
goal is to find a set of controllers Krcpr(x,t) C U such
that a controller k(z,t) € Krcpr(z,t) implies the condition
h > —a(h) under the worst-case scenario. This goal can be
achieved by modifying the condition (8) by introducing a
compensation term, which will be denoted as ¢ in this paper.

The compensation term takes different forms based on
what we know about the system and the uncertainty. For
example, if there exists a 7z > 0 such that ||u(z, u,t)|| <7
forall x € X, v € U and t > ty, then we can use [21], [66]:

o(z) =l Vh(z)|. @2n
Consider that the uncertainty affects the system dynamics
through input channels, that is, p(z, u,t) = g(z, t)d(x, u, t).
This case is called matched uncertainty. If the input uncer-
tainty d satisfies ||d(x,u,t)|| < d withad > 0 for all z € X,
u € U and t > tg, then, instead of (21), we can use:

o(x,t) = d||Lyh(z,1)]], (22)
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to scale the compensation with L,h(z,t) which characterizes
the effect of d on h. If ||d(z,u,t)|| < dy||u| for all z € X,
u €U and t > tg, which can occur if there is a sector-
bounded uncertainty in the input [32], then one can use a

compensation of the form
o(,t) = du|| Lgh(z, t)]|[Ju].- (23)

The input-to-state safety type of robust controllers utilize a
robustifying function of the form [16], [18]:

orssi(z,t) = || Lyh(z,t)||%e, €>0, (24)
and
UTISSf(xvt) = ||Lgh(JC,t)H2€(h(l')),

d
d—;(r) <0, VreR,

(25)
e(r) >0,

where the latter introduces the ‘tunability’. Table I in [66]
provides a summary of various forms of ¢ in the literature
as well as the underlying assumptions on the uncertainty.

Definition 4 (Robust control barrier function, generalized
from [21]). Let S be the O-superlevel set defined as in (3)
with a continuously differentiable function & : X — R, and
let O be a regular value of h. The function A is called a robust
control barrier function (RCBF) for (18) on (X x T) if there
exist functions o € K, and 0 : X x U x T — R such that

sup[th(x,t)JrLgh(x,t)ufJ(x,u,t) >—a(h(x)), (26)
uel

Y(z,t) € (X xT).

Given a RCBF h with functions o € K, and o, we can
define the point-wise set of controllers:

Krepr(z,t) 2 {ucU | 27
Lih(z,t) + Loh(z,t)u — o(x,u,t) > —a(h(x))}.

The following lemma summarizes the sufficient condition
so that controllers from Krcpr guarantee the robust safety:

Lemma 2. Let h be a RCBF for (18) on (X x T) with a
Sfunction o. Any controller k(x,t), that is locally Lipschitz
continuous in x and piecewise continuous in t, satisfying
k(z,t) € Krepr(x,t) for all (z,t) € (X x T) ensures that
the system (19) is safe w.rt. S if the following condition
holds for all uw € Krcopr(x,t) and (z,t) € (0S x T)

L,hz,u,t)+o(x,u,t) > 0. (28)

Proof. The K¢ definition implies a(h(x)) =0, VY € 0S.
Thus, it is evident from (27) and (28) that any controller
k(x,t) € Krepr(z,t) for all (x,t) € (X x T) ensures that
(6) is satisfied. The regularity requirements on the controller
k ensure the existence of a unique solution z(t), and Theo-
rem 1 completes the proof. O

In general, it is a challenging task to find a proper o. For
example, choosing a function that takes large positive values
may satisfy the condition (28) conservatively. However, this
decreases the feasibility of the control problem by making
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the set Krcpr smaller, cf. (27). It is important to construct
the compensation compatible with the safety problem (for
example by adding Vh or Lyh into o) and the uncertainty
assumptions to mitigate this trade-off; see e.g. (21)-(23).
Furthermore, notice that the condition (28) is posed over
the boundary of S. Consequent to this observation, robust
safety is primarily related to the values that the function o
takes when x € 0S. This gives us a certain relaxation factor
that will be used in the ‘tunable’ setting in Section IV.

D. Robust Safety Filters
We can update the optimization problem (OP) in (12) based
on the RCBF condition (26) to get the robust safety filters:

kop(z,t) = argmin |lu — kq(z, )| (29)

uel
Lyh(z,t) + Loh(z, t)u — o(x,u, t) > —a(h(zx)),

where kg is the desired controller. Relying on the RCBF
definition and Lemma 2, we can summarize conditions such
that kop ensures the closed-loop robust safety.

Theorem 3. Let h be a RCBF for (18) on (X x T) with
Sunctions o € K and o. Then, the OP (29) is feasible, and
kop(z,t) € Kropr(z,t) for all (z,t) € (X x T). Further-
more, the system (19) is safe w.rt. S when u = kop(x,t)
if kop is locally Lipschitz continuous in x and piecewise

continuous in t, and o satisfies (28) for all w € Krcpr(z,t)
and (z,t) € (08 x T).

Proof. The existence of a RCBF implies that Krcpr(z,t)
is not empty for any (z,t) € (X xT), thus the con-
straint in (29) is feasible. Furthermore, this ensures
kop(z,t) € Kropr(z,t) for all (z,t) € (X x T). Since o
satisfies (28), Lemma 2 concludes the proof. O]

s.t.

It is noted that the controller should have appropriate
regularity properties for closed loop safety. Another design
concern for o is the implementation of the OP (29). In
particular, the class of the OP depends on the structure of
o(x,u,t) with respect to u. For example, if o is affine in
u, and U can be represented with affine constraints, then the
problem remains a QP. Other functions can be put into other
solution-friendly forms such as second order cone program
(SOCP) [32], [67], or mixed-integer quadratic program [43].

lll. IMPLEMENTATION OF GENERAL PRINCIPLES

In this section, we outline the design process for a novel
safety filter tailored to address a specific set of uncertainty
assumptions. We derive a sufficient condition to ensure
feasibility and establish robust safety guarantees. Then we
demonstrate the controller on an application.

A. Worst-case-based Design
We start with the following assumption.

Assumption 1. The matrix g(z,t) has full column rank
for all (z,t) € (X x T), and thus the left pseudo-inverse
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g" X x T — R™*" exists:

g'(@.t) = (9, Tg@.1)) gla,t)7.

Since the number of nonzero singular values of a matrix
is equal to its rank, this assumption also implies that there
exists a constant p > 0 such that

V(x,t) € (X xT),

(30)

€19}

i ) at > )
min L p (z,t) 2 p
where p;(z,t) is the i-th singular value of g(z,t) at any

point (z,t) € (X x T).

Assumption 1 is common in disturbance rejection prob-
lems [68], [69]. Using the left pseudo-inverse gT, we can
separate matched and unmatched uncertainties:

w(x,u,t) = g(x, t)d(z,u,t) + Az, u, t), (32)

where d : X x U x T — R™ is the uncertainty matched with
input, and it is defined as:

d(z,u,t) £ g' (2, t)u(z,u, t). (33)

The remaining term A : X x U x T — R™ is called the
unmatched uncertainty, where gf(z,t)A(z,u,t) = 0 holds
forall z € X, uc€UandteT.

Consider the following assumption on how much the
uncertainty can affect the system dynamics:

Assumption 2. There exist dg, d;, Ag, A; > 0 such that
ld(z, u,t)|| < do + dalull,
1Az, u, t)]] < Ao + Adllul],
V(z,t) € (0S8 x T) and Vu € U.

Remark 6. While ultimate boundedness (d; = Ay = 0) is a
common assumption in the RCBF literature [13], [21], [50],
[70], it may be too restrictive when the uncertainty scales
with the control input (an example will be given in the next
part). We include the terms d; and A; to incorporate an
affine relationship between ||u|| and the uncertainty bound.
While a similar problem was studied in [32] for dy= Ay =
Ay = 0, our solution accounts for a more general problem
and requires extra conditions to ensure the feasibility.

(34)

We consider a compensation of the form:

o1(wyu,t) =l Loh(w, ) (do + da Jul]) (35)
+IVR@) (B0 + By u]).
The set of Krcpr With o1 becomes
Kohpp(a,t) = {u €U | Lyh(z, thu (36)

~[1Lgh(@) | (do + daull) =V A(@) [ B flul = = ¥(a.8) },

where ¥(z,t) £ Lih(x,t) + a(h(z)) — |Vh(z)|Ao. The
next theorem provides a novel sufficient condition to ensure
the feasibility of the robust safety filter with 0.

Theorem 4. Let Assumption 1-2 hold with constants p > 0
and dy,dy,No, A1 > 0, and let U = R™. A continuously

differentiable function h with a regular value of 0 is a RCBF
Sor the system (18) on (X x T) with o1 given as in (35) if

di <1-1A4/p, (37)

and

U(x,t) >0, Y(z,t)€gq, (38)
where V(x,t) £ Lih(z,t) + a(h(x)) — |Vh(z)||Ao. This
implies that, should (37)-(38) hold, the set K{tpp(x,t) is
not empty for any (z,t) € (X x T).

Proof. Our goal is to show that (37)-(38) are sufficient for
the RCBF definition (26) with o0 = 01. We consider two
cases separately: (z,t) € G and (x,t) € (X x T)\ G.

For the first case, we have Lyh(z,t) =0 (cf. (10)), and
the condition in the RCBF definition (26) becomes

U(z,t) > [[Vh(z)[| A lul. 39)

If |[Vh(z)|[A; =0, then this condition holds trivially for
any u € R™ since the left hand side is strictly positive
V(x,t) € G per (38). If |Vh(z)||A1 > 0, then (39) becomes
U (z,t)
Jull < o
[Vh(z)[| Ay
Since the right hand side is strictly positive, there exists a
0 > 0 such that (40) holds for all u satisfying ||u|| < 4. Thus,
K{tpr(z,t) is not empty for any (z,t) € G.
For the second case, (z,t)€ (XxT)\G implies
Lgh(z,t) # 0. Thus, ||VA(z)|| > 0 and (26) becomes
Lgh(@, tyu—||Lgh(@,t)|[di||ul| — [|VA(z)[| A |Jul| >
—U(x,t) + || Lgh(z,t)|/do . 1)

x(z,t)
Since U = R™, we can choose u such that Ljh(z,t)u =
|Lgh(z,t)||||ull G.e., the same direction as the vector
Lyh(z,t)). This selection simplifies (41) to
(IZgh(z, )[(1 = dv) — [IVA(2)| A1) [ull > x(x,t). (42)
M (z,t)
If M(z,t) > 0, then Ju € R™ satisfying (42) regardless of

the sign of x. Thus, M(z,t) > 0 is a sufficient condition for
the RCBF definition when (z,t) € gX x T) \ G. Recall that

(40)

IVA(2)|| > 0, which implies rg#:0r > 0 where
M(z,t Vh(z)Tg(x,t - _
(@,t) _ [Vh(z) g(z,t)] A—d)-K.  @3)

IVh@)II - IVA@)]

Here we used Lgh(x,t) = Vh(z) g(z,t). Note that
1 —d; > 0 per (37). Since (31) implies

g gz, 1)
min ———— >p, V(r,t)e (XxT), (44
By g 22 Ten e XD
we have Mz, 1)
€T — J—
= > p(1—di) — Ay (45)
[Vh(@)|| — =
Using (37) we can show that IJ\Vdf(:(?j))H > 0. Thus, (37)-(38)
are sufficient for the RCBF condition (26) with oy. O
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Theorem 4 provides a condition for the existence of a
controller ensuring robust safety when U = R™. While it is
typically a challenging problem to find such explicit con-
ditions for U C R™, recent developments led to a rigorous
framework for incorporating input bounds implicitly using
backup CBFs [71], even for a robust problem [72].

Remark 7. If we consider the case A; = 0, then the sufficient
condition (37) simplifies to d; < 1, which is equivalent to the
condition found in [32] (given as 0 < d < 1). However, with
A, the condition (37) includes the case of an unmatched
uncertainty changing with w.

Condition (38) implies that when Lyh(z,t) = 0 the barrier
function condition i > —a(h) should be attainable merely
by f under the worst case scenario. The existence of a
a € K¢, satisfying (38) with given f and A is a property
that h should have for the RCBF definition.

Theorem 4 provides sufficient conditions ensuring the
point-wise feasibility of the robust safety filter with the
compensation o1, which is tailored to cancel the uncertainty
in a worst-case manner.

Theorem 5. Let Assumption 1-2 hold with constants p > 0
and do,dy, Ao, A1 > 0. If h is a RCBF for the system (18)
with o1 as in (35), then the system (19) is safe w.rt. S when
u = kop(z,t) if kop is locally Lipschitz continuous in x
and piecewise continuous in t.

Proof. Considering Assumption | and the compensation o
as in (35), the condition (28) becomes:

Loh(z,t)d(z,u,t) + Vh(z) " Az, u,t) (46)

+ 1Lgh(a, )l (do+duull) + V(@) (Bo+Bajull) = 0.

Thus, if the uncertainty satisfies Assumption 2 with constants
do,d1, Ag, Ay > 0, the compensation o7 as in (35) satisfies
the condition (28). Theorem 3 completes the proof. O

It is noted that the safety constraint becomes non-smooth
due to ||u||, therefore duality conditions cannot be used to
calculate the closed-form solution in a general case. Yet, it
can be shown that the constraints in the OP (29) can be
represented as a rotated second order cone, and thus can
be solved effectively using efficient algorithms such as [73].
Moreover, a closed-form solution may exist for the scalar
input case.

Remark 8. The lack of a general solution prevents us show-
ing the Lipschitz continuity for the robust safety filter with
o1. In [52], authors show that relaxing the safety constraint
with a slack variable can ensure Lipschitz property at the
expense of losing the safety guarantee. Furthermore, authors
in [32] ‘conjecture that the solution remains locally Lipschitz
continuous when the constraint is described by two second
order cone constraints’. Showing the Lipschitz properties for
a general case is left for a future work. The scalar input case
has the same Lipschitz properties as the QP in (16).
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FIGURE 1. (Left panel) Mechanical model of a swing. The
distance [ changes periodically. (Right panel) The safety goal
0 < Omax as the white rectangle, the set S as green ellipse, the set G
highlighted by the dashed-dotted line, and the simulated trajectory
for u = ka(x,t) = 0 is shown by the red curve.

B. Example
To demonstrate the theoretical concepts we consider a pen-
dulum, depicted in Fig. 1, whose angle from the vertical
position denoted as 6. A mass m is carried by the massless
rod and its distance from the pivot [ changes periodically
in time according to a time-dependent constraint. A motor
provides the control torque u and G is the gravitational
acceleration. This may be considered as the simplest model
for a child on a swing who is moving its center of mass up
and down to destabilize the hanging down position while the
input torque is applied to ensure safe swinging.

The equation of motion is derived in Appendix A using
Lagrangian equations. Choosing the angle and angular speed
as states, i.e., z 2 [0,0], we can obtain:

. T2 _ 0
T _ G ging, — 2, . “7
1(t) 1 1(t)*2 ml(t)?
F(x,t) 9(t)

It is noted that the system functions f and g can be calculated
explicitly when [(¢) and [(t) are given. We let U = R.

To enforce physical safety, we want to limit the angle:
0] < Omax = 7/6. Excluding @ from h(z) would imply that
G =R? x R, and the necessary condition (11) cannot be
shown for a general periodic excitation of (). Thus, we
enforce the goal using a quadratic function h : R? — R:

A is negative definite,
as <0, c¢>0.

(48)
The corresponding set S € R? is an ellipse with a slight
tilt in counterclockwise direction for as < 0, see the green
domain in Fig. 1 for parameters a; = —7.30, as = —0.25 s,
as = —1 s? and ¢ = 1. Observe that S is a subset of the
original safety goal |0| < 0i,.x (white region). Therefore,
ensuring the invariance of S is sufficient. We take the desired
controller as kq(x,t) = 0, and simulate (47) for m = 30 kg
and [(t) = L = 1.75 m (this time-invariant configuration is
denoted as case (A)). Starting from z = [0, 1.4 rad/s] ", the
simulated trajectory (red curve in Fig. 1) leaves S even for
a constant /. Below we design safety filters to ensure safety
w.r.t. S for two scenarios: ideal and partially known models.

h(z) = leAx—i—c, A= M09z
2 az2,0a3
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FIGURE 2. (Left panel) Simulated trajectories when the safety filter is implemented for case (A), and curves marking where the desired
controller is intervened. (Middle panel) Simulated trajectory when the safety filter is implemented for case (B). (Right panel) The maximum
6 along the limit cycle as a function of w (for r/L = 0.2) and /L (for w = 4.8 rad/s).

Ideal Case
We will use safety filter to keep the system safe. To do this,
first we need to show that & is a CBF for the system (48).

Proposition 1. The function h as defined in (48) is a CBF
for (47) with a(h) = ach for any a. > 0.

The proof of Proposition 1 is given in Appendix B. Since
U =R and m =1, the closed form solution of the safety
filter in (16) can be implemented. The system is simulated
with the same conditions as above (case (A) and same x()
using a, = 1.5 1/s, see the black trajectory in the left panel
of Fig. 2. When 6 approaches 6. with a large rate 0, the
safe control is activated, i.e., kqp(z,t) = Pqp(x,t), and
it slows down the swing to ensure safety. The controller
switches back to kq(x,t) =0 when state is ensured to be
contained in S with no control. This cycle is repeated until
the trajectory converges to a stable limit cycle inside S.

The curve where the switch occurs between safe
control and no control can be found explicitly using
Dqp(z,t) = kq(z,t) = 0. This equation yields two solu-
tions in the form of time-varying parabolas in the state
space (depicted in the left panel of Fig. 2 for case
(A)). We have kqp(x,t) = ka(x,t) inside the curves, and
kqp(z,t) = ®qp(x,t) outside. Note that the stable limit
cycle that trajectories converge to grazes the switch curves,
which implies that its shape can be modified through h
and a. We leave the further analysis of the effect of these
particular selections on the nonlinear characteristics of the
system trajectories as a future work, and focus on improving
the resilience of the CBF condition against uncertainties.

Next, we consider the case where a periodic excitation
of the form I(t) = L 4 rsin(wt) is introduced with known
amplitude and frequency values (case (B) is for r/L = 0.2
and w = 4.8 rad/s). Implementing the safety filter (16)
successfully keeps the system safe, because it has full
information of the model f(x,t) and g(¢), see the middle
panel of Fig. 2. The safety results hold for different w
and 7 values. The right panel in Fig. 2 shows the values
max |0(t)| over all ¢ > t4, where ¢, denotes the time it takes
for trajectories to converge to the limit cycle.

s
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FIGURE 3. Simulation results when the safety filter kqp is
implemented with partial information. (Left panel) The maximum
6 along the limit cycle as a function of w (for /L = 0.2), and r/L
(for w = 4.8 rad/s). (Right panel) Simulated trajectory for case (B).

Partially Known Model

Let us consider the case where the amplitude of the periodic
excitation, 7, is not known. The uncertainty emerging from
the unknown periodic excitation can be separated from the
known part in (47) (called the ‘nominal system’). We give
detailed calculations in Appendix C, where we use Taylor
expansion with the assumption r» < L to obtain:

. X2 0
1= g [ @
S —

f(=@) 9

0
[Z (% sin(wt) sin 1 — 2w cos(wt)zg — % Sin(‘*’t)u)] ’

n(x,u,t)

cf. (47). The function p represents the uncertainty, and it
depends on state, input, and time. When we design the
safety filter (16) considering i = 0, the resulting controller
becomes indifferent to the periodic excitation. Consequently,
we observe 6 > 60, for a large enough r at certain w, see
the left panel in Fig. 3. The visual depiction of the safety
violation is given in the right panel for case (B).

Our goal is to design a robust safety filter using o7 as
in (35). To use this framework we check Assumption 1-2.
Assumption 1 is satisfied for (49) since g # 0. In addition,
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FIGURE 4. Left, middle and right panels show simulation results for the robust safety filters with o1, o2 and o3, respectively. The top
row depicts the trajectories for the case (B). The bottom two rows demonstrate the robust safety results for various unknown periodic
excitation » <7 and w < w. Increasing a. allows trajectories to get closer to the boundary of S.

in Appendix C we show that

Az,u,t) =0 = Ag=A7A1 =0, (50)
d(:r,u,t) éa0 +EO|U|’ (51)
cf. (34), and that assuming r <7 and w < w we have
_ 2 _ 7
do ~ 2mLTw, | =< dy = 2-. (52)
—as L

We pick 7 = 0.2L and @ = 6.0 rad/s, which yields dy = 310
Nm and d; = 0.4.

With Assumption 1-2 satisfied, we can utilize o7 as in (35)
for robust safety. Note that the condition (37) holds since
A; =0and d; < 1. Moreover, since Ay = 0, (38) simplifies
to Lyh(x,t) + a(h(z)) > 0, cf. (36). This condition holds
since h was shown to be a CBF for (47), see Remark 3.
Consequently, Theorem 4 establishes that h is a RCBF.

Proposition 2. The function A in (48) is a RCBF for (49)
with a(h) = ach and o7 as in (35) for any a, > 0.

The robust safety filter with o will be called as ksocp.
Implementing ksocp for different values of o € [0.75, 7.5]
/s, » <7 and w < w, we give simulation results in the
left panels of Fig. 4. The trajectory for a. = 1.5 1/s (case
C) is depicted in the top panel, which converges to a
limit cycle inside S without leaving it. We find the values
max |0(t)| over all t > t5, where t5 denotes the settling time
of convergence to the limit cycle. Our findings, shown in the
bottom two panels, align with the theoretical results.
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IV. LESS CONSERVATIVE CONTROLLER DESIGN

This section presents more sophisticated methodologies to
design less conservative robust safety-critical controllers,
leveraging observer-based uncertainty estimation and tunable
compensatory mechanisms to improve control performance
while maintaining rigorous safety guarantees.

A. Observer-based Controller
Recall that, with the uncertainty p, h becomes:

h(z,u,t) = Lyh(z,t) + Lyh(z, t)u + Lyh(z,u,t). (53)
While the function L, A is unknown, it can be e;timated SO
that the barrier function-based safety condition A > —«(h)
can be ensured less conservatively.

Assumption 3. /given a controller £ : X x T — U, there
exist functions L,h: X x T — Rand I' : T — R such that:

‘Luh(m(t),k(x(t),t),t)—L/M\h(x(t),t) <T(t), Vi>to.
(54)

This assumption implies the existence of an estimator
with a deterministic error bound. Some of the well-known
observer and estimator techniques were implemented in the
CBF framework to satisfy Assumption 3, for example, [29],
[36]-[41]. In an effort of finding an estimator satisfying
Assumption 3, we propose the function o5 : X x T — R:

UZ(xﬂt) = _f,u\h(xvt) + F(t)u (55)
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where the first term cancels L,h, and the second term
compensates for the residual error.

Assumption 4. The input relative degree of h is less than
or equal to the uncertainty relative degree of h:

L, h(zx,u,t) =0, V(z,t) € G, Yuel. (56)

This assumption implies that the lowest-order time deriva-
tive of h that the uncertainty y can affect is equal to or higher
than the lowest-order time derivative of h that the input u
can affect. Consequently, the term L,h can be canceled
in h using u. Assumption 4, which can be relaxed, see
Remark 10, allows us to find sufficient conditions such that
h is a RCBF. In particular, using (56), the bound (54) implies

Luh(x(t),t) > —T(t), V(z,t)€G. (57)
Thus, extending Remark 3 for the RCBF definition requires
Lih(z,t)>—a(h(z)) + 2I(t), Y(x,t) €g, (58)

to hold for the inequality (26). If U = R™, (58) is a necessary
and sufficient condition for (26).

Theorem 6. Let S be the O-superlevel set defined as in (3)
with a continuously differentiable function h : X — R, and
let O be a_regular value of h. Let the uncertainty v and
functions L,h and 1" satisfy Assumptions 3 and 4.
o [fU=R"™, then h is a RCBF for (18) on (X x T) with
o4 in (55) if and only if (58) holds.
o [f his a RCBF for (18) on (X x T) with o4, then the
system (19) is safe w.rt. S when u = kop(z,t).
o Substituting oo, the OP in (29) becomes a QP. Fur-
thermore, if U=1R", then the QP has a closed-
form solution given in the form (13)-(14) with

O(x,t) = Pop(x,t) defined as:
s Lgh(z,t)+Loh(z, t)ka(z,t)+a(h(z))—oa(z, 1)
Pl 05 L0 |

(59)

Proof. The proof for the first two statements can be extended
from the discussion in Remark 3 and the proof of Theorem 5,
respectively. Furthermore, since the OP becomes a QP with
o2, the last bullet point can be followed from the proof
of Theorem 2 (as given in [21], [60], [62]) with simple
modifications for 5. ]

Remark 9. Analogous to the CBF-based QP (16), the robust
safety filter (13)-(14) with (59) can be simplified for the
scalar input case (m = 1):

min{kq(z,t), Pqpob(z,t)} if Lyh(z,t) <O,

ka’Ob(l’7t): max{kd(x,t),q)Qp’Ob(;v,t)} if Lgh(l',t)>0,

ka(x,t) if Lyh(x,t)=0,
(60)
where ®qp ob : X X T — R is defined as
_ Lh(x,t) + a(h(x)) + Luh(z, t) = T(t)
Pap.on(7, ) = Lh(z,0) ‘
(61)

High-gain Disturbance Observer
Motivated by the estimator-based compensation setup, we
consider an observer L h: X x T — R utilized in [35], [37]:

Luh(a(t), t) = kopsh(z(t)) — ¢(1), (62)
where kops > 0 is the observer gain and {(t) denotes an aux-
iliary state. In particular, given an initial condition {(0) = (o,
¢(t) satisfies the following ODE:

¢(t)

kobs

(63)
Lyh(a(t), 1) + Lyh(a(t), u(t) + konsh (1) ~¢(1))

U(x(t),u(t),t)

ol

Note that (63) is a linear ODE, and convolution integral can
be used to find the solution:

t i ~, ~, ~
C(t) = Goe ™Rt + kg / o Fore =0 (2(F), u(f), £)di.
0

(64)
We can find a deterministic error bound T'(¢) for the ob-

server (62). Focusing on the explicit time dependency with a
slight abuse of notation, we use L, h(t) = L, h(z(t),u(t),t).

Assumption 5. There exist constants L, ho, L > 0 such that:
|Luh(to)| < Lyuhy, Vio €R, (65)
) — Luh(s)| < Llr —s|, Vr,s € T = [to, 00). (66)

While (65) accounts for the boundedness of the initial
uncertainty, (66) constitutes an upper bound on how fast
the effect of the uncertainty changes in time. That is, £
is the Lipschitz constant of L,h in ¢. Lipschitz bounds are
commonly utilized in RCBF formulations [42], [43], [52] and
these can be obtained from sampled data using Strongin’s
estimator [74], [75]. .

Using the observer error e(t) = L,h(t) — L,h(t), the
following lemma gives us the error bound T'(¢).

|L.h(r

Lemma 3 ([35]). Consider a function h with the time deriva-
tive given in (53) and an observer defined in (62)-(64) with a
gain kops > 0 and the initial condition (y = kopsh(xo). Let
the function L, h satisfy Assumption 5. Then, the followmg
bound holds for the observer error e(t) = L,,h(t) — L h( ):

L c
()] < (Luho - k) i L

I(t)

The proof (which can be seen in [35] in detail) is omitted
here. Starting from |e(to)| = L,h,, the error moves into a
narrower band determined by =— as the time progresses
(assuming L hy > E ——). Note that the faster the uncertainty
dynamics are (spemﬁed by a larger £), the wider the steady-
state error band gets. A larger kops not only shrinks the
steady state error band, but it also forces a faster initial decay.

Lemma 3 implies that the observer (62) and the error
bound (67) satisfy Assumption 3. Under Assumption 4, see
Remark 10, Theorem 6 can be used to obtain safety results
for the observer-based robust safety filter. We note that, for

Vvt e T.

(67)
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the observer (62), the necessary condition (58) becomes:

Lyh(z,t) > —a(h(z)) + 2max {Luh07 kﬁ}, (68)
obs
V(z,t) € G.

More accurate initial uncertainty guess and smaller rate of
change of the uncertainty can alleviate the condition (68).

Remark 10. Assumption 4 can be relaxed for the observer
scheme discussed here. Details can be obtained in references
[36], [68], yet, in short, the observer can be extended to
estimate disturbances on & rather than h. Then, a high
relative degree CBF framework [8], [9] can be used to ensure
robust safety in the case the input relative degree is more than
the uncertainty relative degree.

Remark 11. There is a causality issue hidden when the
observer (62) is implemented to a control system (18), and at
the same time the observed value L,h is used to calculate
a control input u. In particular, calculating the controller
u(t) using (59) requires {(t) (plug (62) into (55)). Yet, (64)
implies that ¢ depends on the function u(f) over t € [to, t].
We break this causality loop in the implementation by using
a delayed input when calculating (64) (single time interval).
Investigating the effect of this ad-hoc solution in a mathe-
matically rigorous way using control barrier functionals [76]
is left as future work. We note that we observed this effect
to be negligible in our examples.

B. Tunability-based Controller
The difference between an oracle safety filter (with full
model information) and a robust design emerges from two
sources: the uncertainty in the model L,h, and the term o
used to compensate for it, cf. (8) and (26). The observer (62)
alleviates both as the obielver gain k,ps increases. Indeed,
for kops —+ 00, we get L,h — L,k and I' — 0. However,
in practice, a high observer gain ks makes the closed-loop
system more susceptible to imperfections, e.g., the system
may become unstable in the presence of input delay [35].
Even for a limited observer gain it is still possible to
decrease the difference between the oracle design and a
robust safety filter with observer. To see this, notice that
the sufficient condition (28) for robust safety is defined on
x € 0S. Thus, I' can be reshaped inside S as long as it
satisfies (28) on the boundary. Motivated by this observation,
as is done in the tunable ISSf case in (25), the compensation
can be reduced based on how far away a state is from the
boundary of S [18]. In particular, we propose

o3(x,t) = —L,h(z,t) + T(t)e(h(z)), (69)
where, the function ¢ : R — R satisfies
e(r)>0, VreR, and (1—¢) € K" (70)

The second condition in (70) implies that €(0) = 1, thus
(28) holds for o3 with an observer satisfying Assumption 3
since v € 0§ = h(z) =0 = o3(z,t) = 02(x,t). The
class-KC property of 1 — ¢ implies e(h(x)) < 1 if h(x) > 0.
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Therefore, the effect of the error compensation term in
(69) gets mitigated inside S. As a result, the tunability
modification yields less conservative robust safety filters.

Remark 12. Even the necessary condition for the RCBF
definition is relaxed with e, cf. (58):

Lyh(z,t) > —a(h(x)) + 2T ()e(h(x)),
V(z,t) € GN (X x T).

Theorem 7. Let S be the O-superlevel set defined as in (3)
with a continuously differentiable function h : X — R, and
let 0 be a regular value of h. Let the uncertainty p and
functions L,h and T satisfy Assumptions 3 and 4. Let ¢
satisfy (70).

o [fU=R"™, then h is a RCBF for (18) on (X x T) with
os in (69) if and only if (71) holds.

e If his a RCBF for (18) on (X x T) with o3, then the
system (19) is safe w.r.t. S when u = kop(z,1).

e Substituting o3, the OP in (29) becomes a QP. Fur-
thermore, if U = R™, then the QP has a closed-form
solution given in the form (13)-(14) with ®(x,t) =
Doz, t) defined as:

Lih(z,t)+Loh(z,t)kq(x, t)+a(h(z))—o3(z,t)

(71)

P, 2 :
ron(:1) Loh(z. )2

(72)

Proof. The proof of Theorem 6 can be followed with the

only change e. O

Remark 13. If the function € is continuously differentiable
on a closed interval, then it is Lipschitz continuous. As a
result, the Lipschitz properties of the resulting controller is
the same as the observer-based QP.

Remark 14. Similar to the observer-based method, the robust
safety filter (13)-(14) with (72) simplifies for scalar input:
min{kq(z,t), Pqp,1ob(x, 1)} if Lyh(x,t) <0,
max{kq(z,t), Pqp, Tob(x,t)} if Lyh(x,t)>0,
ka(z,t) if Lyh(z,t)=0,
(73)

kqp,Tob(, ) =

where
Lyh(w,t)+a(h(x)+ Luh(z, ) =T (H)e(h(x)))
Lyh(z,t) '

PP, Tob (2, t) =~
(74)

Henceforth, we will use an exponential function as e:
e(h(z)) = e @), (75)

which satisfies (70) for any A > 0. Note that A = 0 returns
to the observer-based design with o9 as in (55).

V. EXAMPLE

In this section we continue implementing robust safety
filters to the swing example introduced in Section III-B. In
particular, we first demonstrate that theoretical findings are
supported by numerical simulations for o3 and o3. Then,
the likeness of robust controllers (also including o) to the
oracle design is investigated using a performance metric.

11
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FIGURE 5. Simulated trajectories (left) and control input (right)
when the two robust compensation methods as well as the oracle
controller (with full model information) are implemented. Although
results are very close in the state space, control inputs are consid-
erably different.

A. Robust Safety for Partially Known Model
Observer-based Controller

The uncertainty for the swing example is matched, that is,
A(x,u,t) = 0. Thus, Assumption 4 is trivially satisfied. We
use Strongin’s estimator [74] with the simulation data from
the previous configuration to obtain the Lipschitz constant
L ~ 8 1/s%. For simplicity, we assume we have an accurate
estimate of the initial error, thus, we use L,,,ho =0.

Proposition 3. The function h defined in (48) is a RCBF for
(49) with a(h) = ach and o9 as in (55) with observer (62)
for ae > 2as/as and kops > Lag/as. This implies that the
system (49) is safe w.r.t. S when u = kqp ob(z,t) in (60).

Here, ac > 2as2/as and kops > Las/as are imposed to ac-
commodate for the extra term 2L /kops emerging from (71).
Implementing kqp oL, We run simulations using same con-
ditions as the previous case, see the middle panels of Fig. 4.
The top panel depicts the robust safety of a single trajectory
converging to a limit cycle for case (C). The bottom two
panels show max |0(t)| for kobs =20 1/s > Laz/as and

€ [0.75, 7.5] 1/s > 2a3/as3. Robust safety is consistent.

Tunability-based Controller
Next, we consider the observer-based QP enhanced with the
tunability feature with € chosen in (75).

Proposition 4. The function h defined in (48) is a RCBF
for (49) with a(h) = a.h and o3 as given in (69) with
observer (62) and ¢ in (75) for a. > 2as/as, kobs > Las/as
and A > 0. This implies that the system (49) is safe w.r.t. S
when u = kQP,Tob (1’, t).

Simulations are repeated for kops = 20 > Lag/ag 1/s,
A =25, and a, € [0.75, 7.5] 1/s > 2az/ag, see the right
panel of Fig. 4. Again, the robust safety results are consistent
through all simulations.

B. On the Likeness to the Oracle Design

While increasing . yields less restrictive conditions for all
configurations, see Fig. 4, it comes with the price of larger
control inputs. This is especially the case for the SOCP,

which requires a more aggressive lower bound for h in order
to achieve comparable performance. This is demonstrated
in Fig. 5, where simulated trajectories are depicted for
controllers ksocp (ac =12 1/s) and kqp, Tob (e =2 1/,
kobs = 20 1/s, A = 5) with color blue and red, respectively.
We also plot the case where an oracle-based safety filter
is implemented (i.e., the full model is used) with a. = 1.5
1/s. Notice that trajectories are very close to each other. Yet,
maintaining the motion requires larger control input for the
SOCP due to its worst-case type of compensation, see the
right panel of Fig. 5. The input of the tunability-based case,
however, is closer to the oracle thanks to its ability to reject
the effect of the unknown dynamics in the controller using
L, h. The difference between the robust controllers and the
oracle is given in the bottom right panel.

Motivated by these observations, we use a performance
metric to compare robust controllers. The performance goal
for this comparison study is taken as minimizing the de-
viation from the oracle controller. The logic behind this
choice is as follows: if we have the perfect information
of a system model, then it may be possible to design a
controller minimizing a cost function. Comparing robust
controllers to this oracle controller serves as a meaningful
and practical comparison metric because it eliminates the
necessity of specifying this cost. This metric is merely used
for comparing these robust controller design principles and
it does not play a specific role in designing these controllers.

The performance goal is quantified as minimizing the
cost Hk:s(at, t) — Koracle(,t)||, where Kkoracle denotes the
oracle controller that is designed utilizing the ideal model
information, and the index s refers to different robust safety
filter designs, i.e., SOCP, QP, ob and QP, Tob. In this com-
parative study, the oracle is represented with data generated
using simulations for random system configurations (initial
conditions ¢ty € R and x¢ € S, and amplitude » < 7 and fre-
quency w < w of periodic excitation). Overall, we generate
M = 1000 episodic runs of length N when u = koracie(2, t)
is utilized. We collect the state, time and input data from
these runs: z%, ¢! and u}, where k denotes a time instant
in an episode k = {1,---, N}, and 4 denotes the number
among all episodic runs ¢ = {1,--- , M}. Based on this, we
can define the cost:

1 M N )
J WZZ“% xkvtk’ )_u;c’

=1 k=1

(76)

~0

U
to represent the average of the deviation in control
along trajectories over all episodes. The term p collects the
parameters p = [ar, kobs, A] | .

We start with the evaluation of ksocp. The only parameter
in this case is a,. The blue curve in the top panel of Fig. 6
shows that the cost Jsocp decreases monotonously with o
and it settles around ~10 Nm for large a.. Next, we evaluate
the performance of kqp o1. There are two parameters for this
case: a. and kqps. In particular, ko, increases the rate at
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FIGURE 6. (Left) Deviation of the worst-case-based controller
from the oracle-based design given by the cost Jsocp as a
function of a. (blue curve), and deviation of the observer-based
controller from the oracle-based design given by the cost Jqp,ob
as a function of a. for various kons values (green and purple
curves). The minimum values J&p .1, decrease as kops increases.
(Right) The minimum values J&p 1,1, of the cost Jqp Tob Over
ac € [0.75, 7.5] 1/s and kobs € {20,25,30,40} 1/s for a fixed
M. This represents the deviation of the tunable observer-based
controller from the oracle-based design as a function A.

which the uncertainty is observed, thus a more accurate can-
cellation can be obtained in the controller. The cost Jqp,ob
is depicted in the left panel of Fig. 6 as a function of o, for
kobs € {20,25,30,40} 1/s with different colors. Each curve
has a minimum value J§p ;,, which decreases as kobs is
increased. This aligns with the discussion that introducing an
estimator mitigates the difference between the robust safety-
critical controller and the oracle-based design. Finally, we
evaluate the tunability modification kqp 1o, Which depends
on the parameters «., kopns and A\. We compute the cost
Jaqp,Tob and find the minimum J&p 1, over a range of a.
These minima are depicted in the right panel of Fig. 6 as a
function of A for kops € {20, 25,30,40} 1/s. Note that A = 0
means the observer-based design without tunability. Our
findings support the argument that tunability (i.e., increasing
M) reduces the deviation from the oracle-based controller.

VI. CONCLUSION

This work investigated the means to obtain robust safety
guarantees for control barrier function-based safety-critical
controllers in the presence of model uncertainties. We first
introduced a general framework providing conditions for
robust safety. Then, we utilized the general framework
to investigate the robust safety conditions of three design
methodologies: a worst-case-based approach, an observer-
based approach, and a modification to the latter via tunability.
The theoretical results were demonstrated on a practical
example of a pendulum with unknown periodic excitation.
Finally, we compared the designs based on a performance
metric defined as their deviation from the oracle-based
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controller. Our findings showed that improved performance
could be obtained by introducing means in the controller to
estimate the effects of the uncertainty. Further improvements
could be shown by reshaping the error compensation based
on how safety-critical the state is.

The main future research direction is the development
of a broad and systematic framework for merging different
robustifying compensation designs to pick the most appro-
priate design strategy. This framework can include an online
scheme to switch between different compensation strategies
to adapt dynamically to changing conditions. Moreover, fu-
ture efforts will be directed to obtain conditions for Lipschitz
continuity of RCBF-based controllers.

APPENDIX

A. Deriving the Equation of Motion

We use Lagrange equations of the second kind to derive
the equation of motion of the swing example introduced in
Section III-B. The degree of freedom of the system is one
but the system has a time dependent constraint. Choosing the
generalized coordinate 6, the kinetic and potential energy 7'
and U, and virtual power 0 P of the active force reads:

T = %m(l(t)292 +1(t)?), (77)
U = —mGlI(t) cosb, (78)
6P = udé. (79)

The Lagrangian is defined as L =7 — U while the last
equation gives the generalized force () = u as the coefficient
of the generalized virtual velocity §6. The Lagrange equation

doL 0L
Giag 0 =@ (80)
leads to the equation of motion:
mi(t)%0 + mGl(t)sinf + 2mi(t)i(t)0 = u.  (81)

Choosing the angle and the angular speed as states, i.e.,
x 2 [6,0]", we obtain the nonlinear system dynamics:

0

+[ ; }u (82)
ml(t)?

———

f(z,t) g(t)
Interested readers can refer to [77], [78] for a detailed
nonlinear analysis of a similar system without control.

: T2
z = G o it)
I Sin w1 — 2@372

B. Proof of Proposition 1
Proof. We start by showing that 0 is a regular value of
h. Since Vh(z) = Az, and A is not singular, we have
Vh(z) = 0 only at = 0, which is not in 9S for any ¢ > 0.
Also, note that S is not empty for any ¢ > 0.

Next, we show the necessary and sufficient condition (11)
(recall U = R). We have ay, az,a3 < 0, and a; — a3/az > 0
per the assumptions on A in (48). First, we define the set:

G ={(z,t) € (R* x T) | agz1 + azzs = 0}, (83)

13
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which forms the line 22 = —%2x; in the state space R?,
see Fig. 1. Choosing a(h) = ach € K, with a, > 0, our
goal is to show that there exists an open set X C R? such

that L¢h(z,t) + ach(x) > 0 is satisfied V(z,t) € G. Notice

that Lyh(z,t) = —(a1 — a3/as)az/asz? for all z satisfying
Lyh(x,t) = 0, thus the condition reduces to
2
(a1 - @) (% - ai) 2 4 e > 0, (84)
as 2 as

which is time-invariant, thus any T C R can be selected.

We separate cases 0 < a. < 2‘;—? and a. > 2;—;. For the
former, one can show that the coefficient of 21 becomes non-
negative, thus (84) holds over any X C R2. For latter one,
the left hand side of (84) becomes a concave parabola that
crosses the horizontal axis at

—QcC
(a1 — a3/asz) (o /2 — az/az)’
see Fig. 7. Notice that L¢h(x,t) > 0 for all (z,t) € G. Thus
L¢h(x,t) + ach(z) = 0 holds if and only if h(z) < 0. This
implies that 27 € R?\ S regardless of a, thus X can be
selected such that S € X C R? on which (84) holds. O

(85)

xp =da] ==+

C. Separating Uncertainty and Finding Bounds

We use [(t) = L+ rsin(wt), yielding I(t) = rw cos(wt).
Considering the amplitude of the periodic excitation as
unknown, we can use Taylor expansion to separate the un-
certainty from the known portion of the model. In particular,
we represent the functions ﬁ % and ﬁ using Taylor
expansion around 7 = 0. Assuming r < L and ignoring the
higher order terms yields

1 1 ro.
@ Z — ﬁ Sln(wt), (86)
I(t r
lgti ~ W cos(wt), 87
1 1 2r
TR ~ T3 I8 sin(wt). (88)
Then, the system dynamics become
. T2 0
= i [ ®
—_——— ——
f(x) g
0

7 (% sin(wt) sin x1 — 2w cos(wt) e — —2 sin(wt)u)

w(w,u,t)
Finally, we look for bounds on the uncertainty. Using the
left pseudo-inverse g* = [0 mL?] of g, we can separate the
uncertainty p as
Az, u,t) =0,
d(z,u,t) = g'p(z,u,t) =

(90)
oD

Sk

<mGL sin(wt) sin 6 — 2mL%w cos(wt)f — 2 sin(wt)u) .

‘ Lyh(z,t) + a.h(x) >0

-60 -30 0 30 60

0 (deg)
FIGURE 7. The necessary and sufficient condition (11) along the
G. One may find a X D S on which the condition is satisfied.

Our goal is to look for constants dy and d; such that (34) is
satisfied for a reasonable range of periodic excitation » < 7
and w < w. Since |sin(wt)| < 1 for any w and ¢ we have

- 7

dy =2—. 92)

t~

Next, we look for the bound dy on z € S, which is a
closed contour of h(z) = 0 in R, see Fig. 2. The bound dy
can be approximated on this contour using 6pax and Ormaxs
where 6.« and 0,,.x denote the maximum values that state
variables get on this contour. This leads to

T

L

do
cf. (91), where

(mGL sin emax + 2mL259’maX) ) 93)

2c
- . (%4
o= Zjay’ (94)

emax = emax =

Assuming negligible tilt, that is, a% < ajaz, we have

2c 2c
—aq —as”’

and 0, ~ Furthermore, assuming

0max ~

@ > sibumax  the second term in d becomes more domi-
nant. Thus, we can get the approximation:

2c

—as

do ~ 2mLiw (95)
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